If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x-3x^2+5=0
a = -3; b = 6; c = +5;
Δ = b2-4ac
Δ = 62-4·(-3)·5
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-4\sqrt{6}}{2*-3}=\frac{-6-4\sqrt{6}}{-6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+4\sqrt{6}}{2*-3}=\frac{-6+4\sqrt{6}}{-6} $
| 10x+26=84 | | 13-x=3x-7 | | 3z(z+4)=(z2+9) | | 7x+6/3=-12 | | y+3.49=—92.5 | | 21=18+x | | 6x+10+100=180 | | 1100000*x=1015 | | 13y=–12y+100 | | x/5=8/15 | | 24=(2-m)4 | | 2x+x+4+8=30 | | 8x-5x/8=240 | | 2x+x+4=22 | | 7x=21/4 | | 2x(x+4)+8=30 | | 2(x+5)–3=2(x+3)+4 | | 5v-18+6v-15=44 | | 2x(x+4)=8=30 | | 5v-18+6v-18=44 | | 2{r+10}=420 | | 4n+15=5n+3 | | 4x-12+10x+30=2=200 | | 5n+15=4n+3 | | t÷3-8=14 | | 5x-24=x+52 | | 45=2p+5 | | x*2+2x+16=0 | | 4(2x+1)=-5x(x-4) | | 4•(2x+1)=-5x(x-4) | | 253=76-x | | 4x(2x+1)=-5x(x-4) |